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Abstract
Genomics is a relatively new scientific discipline, having DNA sequencing as its core technology.
As technology has improved the cost and scale of genome characterization over sequencing’s 40-
year history, the scope of inquiry has commensurately broadened. Massively parallel sequencing
has proven revolutionary, shifting the paradigm of genomics to address biological questions at a
genome-wide scale. Sequencing now empowers clinical diagnostics and other aspects of medical
care, including disease risk, therapeutic identification, and prenatal testing. This Review explores
the current state of genomics in the massively parallel sequencing era.

Prior to the advent of next-generation sequencing (NGS) technology, genomics initially was
concerned with studying genomes that were tractable from the standpoint of size and
repetitive content (e.g., viruses and bacteria) and with characterization of single genes
associated with disease (e.g., Cystic Fibrosis, Huntington disease, and cancer). As the ability
to construct large clone-based physical maps improved, the subcloned fragments of the
genome contributing to physical map construction could be sequenced as individual
projects, and their finished sequences melded together to represent entire chromosomes.
Hence, important large genomes, including model organisms and the human genome, were
decoded. Indeed, in the era of NGS, the short reads obtained from most platforms absolutely
require these reference genomes as a substrate for read alignment prior to variation
discovery. The impact of these technologies on genomic variant discovery has been
profound, as we will describe. Although we limit the scope of this Review to genomics, an
accompanying Review explores the disruptive impact of NGS on studies of the epigenome
to further highlight the profound transformation brought on by NGS technology (Rivera and
Ren, 2013 [this issue of Cell]).

Genomic Techniques
Although NGS technology initially was used to study whole genomes, a variety of
approaches that address defined regions of the genome have emerged. There are essentially
two technical preparatory approaches to explore selected regions of the genome with NGS.
The first is by PCR, typically involving multiple primer pairs in a mixture that are combined
with genomic DNA of interest in a multiplex approach to preserve precious DNA. The use
of multiplex primer pairs couples the high throughput of NGS platforms and the fact that
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each sequence read represents a single DNA product in the mixture due to the nature of the
sequencing platforms (Mardis, 2013). Following the PCR, the resulting fragments have
platform-specific adapters ligated to their ends to form a library that is suitable for
sequencing. The second approach involves hybrid capture, which has been developed by
several groups and commercialized (Albert et al., 2007; Gnirke et al., 2009; Hodges et al.,
2007). Essentially, hybrid capture takes advantage of the hybridization of DNA fragments
from a whole-genome library to complementary sequences that were synthesized and
combined into a mixture of probes designed with high specificity for the matching regions in
the genome. These probes typically have covalently linked biotin moieties, enabling a
secondary “capture” by mixing the probe:library complexes with streptavidin-coated
magnetic beads. Hence, the targeted regions of the genome can be selectively captured from
solution by applying a magnetic field, whereas most of the remainder of the genome is
washed away in the supernatant. Subsequent denaturation releases the captured library
fragments from the beads into solution, ready for postcapture amplification, quantitation,
and sequencing. When the probes are designed to capture essentially all of the known coding
exons in a genome, the capture approach is referred to as “exome sequencing.” Additional
probes may be designed, synthesized, and added to an exome reagent, typically referred to
as “exome plus.” When only a subset of the exome or of the genome outside of the exome is
targeted, this is called a “targeted panel.”

Genomic Analysis
As important as techniques to produce the NGS data that address biological questions are,
analytical approaches are equally critical for successful interpretation of those data. Many
analytical approaches depend on the digital nature of NGS data, a consequence of the fact
that individual DNA fragments of the library are amplified either on beads or on flat
surfaces (platform specific) prior to the sequencing reaction. Hence, each sequence read is
equivalent to a single DNA fragment. What follows are selected data analysis techniques
from a dizzying number of advances published in just the last 18 months. The pace of
innovation in analytical approaches to genome-wide data analysis continues to engage and
excite the computational biology community as the number of technical applications
continues.

Technological advances have often driven the methods for discovering new disease genes.
Early studies leveraged families in which a disease was segregating to identify the genetic
causes of the phenotype. These linkage analysis studies were successful for highly penetrant,
monogenic diseases such as cystic fibrosis. Standard parametric linkage studies of some
complex traits were successful, particularly when sampling from extreme ends of the
phenotypic distribution. For example, analyzing families segregating early onset
Alzheimer’s disease let to the discovery of multiple genes that contribute significantly to the
phenotype and shed light on the biological mechanisms (e.g., plaque formation) of disease
progression (Goate et al., 1991; Harrington et al., 1995; Pericak-Vance et al., 1991).

Yet, for many complex diseases and traits, this model was not as successful because the
genetic predispositions to complex traits are, as their name implies, more difficult to
elucidate and require larger numbers of samples to discern signal from noise. Theoretically,
it was determined that comparing allele frequencies across the genome between large
numbers of cases and controls would be able to capture common disease susceptibility
alleles (Risch and Merikangas, 1996), and this ushered in the era of genome-wide
association studies (GWAS). It was economically practical to screen thousands of
individuals by genotyping hundreds of thousands of common single-nucleotide
polymorphisms (SNPs) on microarrays. GWAS are well suited too and have been successful
in studying population structure (Price et al., 2010b), anthropomorphic traits (Berndt et al.,
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2013), targets of natural selection such as variants associated with high-altitude adaptation
(Bigham et al., 2009, 2010; Scheinfeldt et al., 2012), and some complex diseases such as
Crohn’s disease (Yamazaki et al., 2005) and age-related macular degeneration (Klein et al.,
2005). These studies led to hundreds of replicable associated loci that cannot be fully
enumerated in this Review. GWAS has perhaps had the most impact in the area of
pharmacogenomics, where robust, highly replicable associations have impacted clinical
actions. For example, warfarin dose is routinely adjusted based upon VKORC1, CYP2C9,
and CYP4F2 genotypes confirmed by GWAS (Takeuchi et al., 2009), which has
significantly improved patient outcomes. Yet, most early GWAS yielded few variants with
large effect sizes; this was perhaps to be expected, given the heterogeneity of the phenotypes
and sample sizes needed to statistically detect signals of association.

The exponentially decreasing cost of next-generation sequencing data generation has put
large-scale investigation of rare variation within reach, and there has been a resultant shift in
the field of complex disease genetics over the past 5 years. GWAS data strongly suggest that
the vast majority of the heritability of complex traits will not be due to a few common
variants with low to moderate effects (Schork et al., 2009). Rare variation with large effect
sizes is likely contributing a significant proportion to the “missing heritability” of complex
traits and disease (Cohen et al., 2006; Manolio, 2009; Zhu et al., 2010). The common
disease-common variant versus common disease-rare variant debate remains unresolved.
There are still questions that remain as to whether the genetic contribution to common traits
can be attributed to an infinite number of common alleles with small effect, a large number
of rare alleles with large effects, or some combination of genes and environment (Gibson,
2011). But the evaluation of rare variants in common disease is ongoing.

Variant Detection
The advent of NGS has enabled the inquiry of nearly every base in the genome, and thus
techniques to reliably interpret and identify millions of variants are being developed. As will
be described below, the advantage of sequencing in this regard is that most variants,
common and rare, can be discovered with the appropriate sequencing read coverage,
algorithmic methods to identify the variants, and a sufficient careful orthogonal validation to
confirm true from false positives. The exception to this discovery potential is due to the
reliance on alignment to the Human Genome Reference sequence, which is the first step to
analysis of NGS data, as this reference does not contain the entirety of novel genome
content across all humans. Numerous variant-calling algorithms have been developed for the
detection and genotyping of germline SNPs (DePristo et al., 2011; Koboldt et al., 2009; Li et
al., 2008; McKenna et al., 2010; Shen et al., 2010) and small indels (Emde et al., 2012;
Leone et al., 2013; Ye et al., 2009) in high-throughput sequencing data. Once detected, these
variants can be analyzed in case-control studies using the same methods that have been
developed for GWAS.

Rare Variation and Burden Testing
However, unlike GWAS (which examines common mutations), sequencing facilitates the
discovery of rare mutations that, combined with the continuing unexplained genetic
contributions to complex phenotypes from GWAS (Manolio et al., 2009), has sparked
intense interest in measuring the association of rare variation with complex phenotypes. This
interest has given rise to a variety of statistical tests with varying strategies for detecting
association of rare variation with phenotype (Chen et al., 2013; Han and Pan, 2010; Ionita-
Laza et al., 2013; Lee et al., 2012a, 2012b; Li and Leal, 2008; Liu and Leal, 2010; Madsen
and Browning, 2009; Neale et al., 2011; Oualkacha et al., 2013; Price et al., 2010a; Wu et
al., 2011; Zhang et al., 2011). In any single gene, there are a large number of rare variants
due to recent human population growth (Coventry et al., 2010; Nelson et al., 2012;
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Tennessen et al., 2012), and there may be many nonassociated variants in a gene.
Furthermore, even in large cohorts, there may not be enough individuals with a given variant
to achieve statistical significance.

To deal with the aforementioned challenge, all of these types of tests share the common
feature that they group or collapse rare variation, usually by gene, in order to increase
statistical power (see Wu et al., 2013 for a recent review). Early tests (such as the cohort
allelic sums test [Morgenthaler and Thilly, 2007] and the combined multivariate collapsing
method [Li and Leal, 2008]) assumed that each variant had the same direction of effect and,
in addition, required a fixed minor allele frequency cutoff to define which variants to
include; but these assumptions are not always valid or optimal. Further innovations have
allowed for weighting of individual variants (for example, by variant frequency in the
weighted sum statistic [Madsen and Browning, 2009] or the data [Han and Pan, 2010; Lin
and Tang, 2011; Wu et al., 2011; Zhang et al., 2011]), variants with heterogeneous direction
of effect (Han and Pan, 2010; Lin and Tang, 2011; Neale et al., 2011; Wu et al., 2011;
Zhang et al., 2011), and selection of the ideal frequency cutoff for rare variants (Price et al.,
2010a). Though this remains an active area of research, the SKAT family of tests (Chen et
al., 2013; Ionita-Laza et al., 2013; Lee et al., 2012a, 2012b; Oualkacha et al., 2013; Wu et
al., 2011) has emerged as one of the most popular. SKAT and its variants allow for inclusion
of covariates for managing both case-control and quantitative data and family or unrelated
data, and they are computationally undemanding. Although the initial version of SKAT lost
power in cases in which all variants in a gene have the same direction of effect, the newer
SKAT-O (Lee et al., 2012a) test combines a test handling bidirectional effects and a test
handling unidirectional effects to achieve excellent power in either case.

Identifying De Novo Mutations
The rarest of variants are de novo mutations: those variants that arise first in an individual.
They have tremendous relevance for disease biology, as they are more likely to have
functional consequences in rare diseases. Characterizing these mutations also allows for the
estimation of the baseline human mutation rate as well as its correlation to parental age
(Abecasis et al., 2010; Kong et al., 2012). An entire class of computational tools has arisen
that utilize both sequencing data and pedigree information to identify de novo mutations
genome wide. Most of these tools currently deal with trios (mother, father, and child) only
and can identify de novo variants arising in the children (Cartwright et al., 2012; http://
sourceforge.net/p/denovogear/wiki/Home/; Li et al., 2012; Li, 2011). Because sequencing
reads have a higher error rate than traditional genotyping, these tools incorporate
information about coverage, the sequencing error rate, the expected de novo mutation rate,
and family relationships.

Although all of these tools identify potential de novo mutations, there remain significant
feature differences between them, and no single tool has yet emerged as the frontrunner. In
addition, only Samtools, DeNovoGear (DNG), and GATK can also predict de novo indels.
Both DNG and Polymutt can handle larger pedigrees, with DNG able to handle multiple
siblings and Polymutt able to handle arbitrarily large pedigrees.

Studying Rare Mendelian Disorders
Rare monogenic disorders have provided unique opportunities to identify disease genes in
humans. Traditionally, such disorders were studied by positional cloning or candidate gene
approaches. Determining their molecular basis, however, was often hindered by small
kindred sizes, genetic heterogeneity, and diagnostic classifications that may not reflect
molecular pathogenesis. However, high-throughput sequencing of the full set of protein-
coding genes—the exome—helps to overcome these obstacles by screening thousands of
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genes in a single experiment. Although this limits the types of mutations that can be
discovered, rare coding variants that are predicted to have significant functional
consequences can be discovered (Bamshad et al., 2011). In fact, it is estimated that, in ~60%
of projects, exome sequencing will identify new Mendelian disease genes (Gilissen et al.,
2012), and it is likely this approach also will contribute to complex disease genetics. Hence,
the exome represents an enriched target space to identify rare variants with large effect sizes,
as opposed to GWAS, wherein variants have low effect sizes.

The analytical approach applied to most exome sequencing studies of rare disorders is
relatively straightforward. First, genetic variants shared by affected individuals (or
segregating with a phenotype, in family studies) are collected. Hundreds or thousands of
variants might be in this initial set. These are filtered using information from public
databases (e.g., dbSNP [Sherry et al., 2001]) to remove common polymorphisms, based on
the expectation that causal mutations will be extremely rare in human populations. Next,
annotation with gene structure information and bioinformatics programs (e.g., SIFT,
Polyphen, CONDEL) further restricts the list of candidates to those most likely to affect an
encoded protein. Ideally, these sequential filtering steps reduce the list to a handful of
candidate causal variants, which can be further evaluated with mutation screening (in other
family members or unrelated, affected individuals), pathway analysis, and functional
validation.

Somatic Variant Detection
The comparison of an individual’s cancer genome to the normal genome (derived from an
unaffected tissue DNA) provides a comprehensive description of the somatic changes that
have occurred in the transition from normal to cancerous cells. WGS approaches to somatic
variant detection are more challenging due to the size of the data and the numerous types of
variants that can be discovered by different algorithmic predictors, relative to WES.
However, structural variants, which are most difficult to predict accurately and with a
reasonable false positive rate, occur frequently in cancer genomes and only can be
discovered from WGS data. With an increasing focus on characterizing cancer
heterogeneity, discussed below, the ability of somatic variant detection algorithms to predict
low-frequency single-nucleotide variants (SNVs) in cancer cell populations is becoming
critically important. There are several new algorithms with this capability, including Strelka
(Saunders et al., 2012), Var-Scan 2 (Koboldt et al., 2012), and MuTect (Cibulskis et al.,
2013). Strelka implements a Bayesian approach that treats the tumor and normal allele
frequencies as continuous variables. In particular, the normal sample is represented as a
mixture of diploid germline variation with noise, and the tumor samples are represented as a
mixture of the normal sample with somatic variation. This approach is meant to provide
robust call sensitivity on low-purity samples and, as such, provides the same robust
sensitivity for low-level variants. Accuracy around indel detection is achieved by Strelka by
jointly performing indel search and read realignment in the context of both samples.
VarScan 2 is a somatic variation version of the original VarScan algorithm that applies
heuristic methods and a statistical test to detect SNVs and indels and their somatic status by
simultaneously analyzing the tumor and normal data. In addition, VarScan 2 can identify
both LOH and somatic copy number alterations as deviations from the log ratio of sequence
coverage depth within the pair that are quantified statistically. MuTect takes input data from
matched tumor and normal DNA alignments and removes low-quality sequence data.
Variant detection is performed in the tumor data by a Bayesian classifier, filters to remove
false positives due to sequencing artifacts that are not captured by the prior error-model-
based filters, and designates variants as somatic or germline using a second Bayesian
classifier. The step to remove rare sources of false positives uses a panel of normal samples

Koboldt et al. Page 5

Cell. Author manuscript; available in PMC 2014 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



filter that represents rare error modes only detectable from the comparison to additional
samples.

Exciting Biological Insights from Recent Studies
Rare Inherited Disorders

Although next-generation sequencing has impacted the human genetics field as a whole, few
areas have benefited more than the study of rare genetic diseases. Some of the earliest
applications of NGS to Mendelian disorders (Table 1) demonstrated that it was possible to
identify disease-causing genes by sequencing the exomes of a few unrelated individuals
(Gilissen et al., 2010; Hoischen et al., 2010; Lalonde et al., 2010; Ng et al., 2010a, 2010b) or
affected family members (Bilgüvar et al., 2010; Bolze et al., 2010; Johnson et al., 2010;
Krawitz et al., 2010; Musunuru et al., 2010; Walsh et al., 2010; Wang et al., 2010). Even the
exome sequence of a single index case proved sufficient for genetic diagnosis for some
disorders when information about the molecular underpinnings of the disease was known.
For example, prioritization of mitochondrial proteins helped to identify ACAD9 in a case
with complex I deficiency (Haack et al., 2010), whereas prior evidence linking STIM1 to
recessive immunodeficiency helped to implicate this gene in a pediatric case with classic
Kaposi sarcoma associated with human herpesvirus 8 infection (Byun et al., 2010).

The impact of NGS technologies on rare genetic diseases is further evidenced by the growth
of the Online Mendelian Inheritance in Man (OMIM) database (McKusick, 2007), in which
the number of inherited phenotypes for which the molecular basis is known has nearly
doubled since 2007 (Table 2). The number of genes associated with rare diseases, too, has
grown at an impressive rate. Yet for many disorders, elucidation of the genetic basis has
outstripped an understanding of the molecular and pathological mechanisms of disease.
More work will be required to determine the precise relationship between genotype and
phenotype.

Lessons from Mendelian Disease Studies
Although NGS offers a powerful strategy to search for Mendelian disease genes, it is
important to realize that many such studies fail despite sufficient numbers of samples. One
failure occurs when the causal variant is found but is deemed nonpathogenic. While the
majority of known disease-causing mutations affect highly conserved protein residues, other
pathogenic mechanisms—such as synonymous changes of rare codons that affect the rate of
cotranslational folding (Kimchi-Sarfaty et al., 2007)— may be responsible but not ascribed
importance. This emphasizes the need for better functional assays of discovered variants.

It is also possible to miss a causal variant. Even with NGS and hybrid capture, ~5% of target
coding bases do not achieve sufficient coverage for reliable variant detection. Furthermore,
with adequate coverage, certain types of mutations (e.g., inversions, duplications, and other
structural variants) remain challenging to detect. Causal mutations also may reside outside
of the regions targeted for exome sequencing. Nearly half of familial ALS in Finnish
populations, for example, is caused by a hexanucleotide repeat expansion in the intron of the
C9orf72 gene (Renton et al., 2011).

Failure also can result when one of the underlying assumptions was incorrect. Genetic and
phenotypic heterogeneity can hinder correct diagnosis of cases, or the assumed mode of
inheritance (and therefore expected genotype pattern) could be incorrect. In retinitis
pigmentosa (RP), for example, around 8.5% of families provisionally diagnosed with
autosomal dominant disease truly have X-linked RP (Churchill et al., 2013).
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In addition, the reliance on public databases such as dbSNP may confound some analyses of
NGS data. The number of known variants in the human genome has risen dramatically over
the past decade (Figure 1), fueled in large part by the advent of NGS technologies.
Intriguingly, although the submissions from 2007 to 2012 grew almost exponentially, the
number of unique reference variants (RefSNPs) followed a more linear growth. Further, a
comparison of the global minor allele frequency (GMAF) distribution between dbSNP
builds 135 (October 2011) and 137 (June 2012) demonstrates that most of the recent growth
came from variants that were rare (GMAF < 0.01) or extremely rare (GMAF < 0.001) in
human populations (Figure 2).

These trends suggest that the majority of common sequence variants in humans have already
been reported, and those that remain undiscovered tend to be rare, perhaps specific to an
individual or population. This has important implications for studies of rare genetic diseases.
The ponderous size of dbSNP certainly makes it a powerful discriminatory tool for common
variation. However, it also suggests that dbSNP filtering approaches must be applied with
caution because dbSNP entries are associated with disease—variants from Online OMIM
(McKusick, 2007) or mutations from the Catalogue of Somatic Mutations in Cancer
(COSMIC) (Forbes et al., 2010, 2011) —and a growing number are too rare to exclude from
consideration.

Sequencing under GWAS Peaks
One way to leverage the results from GWAS and linkage studies to identify rare variation is
to perform targeted sequencing of the regions identified under significant peaks. This
strategy has been used to identify a rare variant in a gene under a linkage peak where
common SNPs could not explain the variance in the phenotype (Bowden et al., 2010). In this
study, common polymorphisms in the ADIPOQ gene that are highly associated with
circulating plasma adiponectin levels in European populations were minimally associated
with plasma adiponectin levels in Hispanic families; however, a rare coding mutation was
identified that contributes up to 17% of the observed variance in Hispanic plasma
adiponectin levels. Additionally, Wang et al. (2013) sequenced exons of >1,000 genes
identified from GWAS linkage peaks that impact human stature. Using a pooled sample
strategy of individuals who were significantly shorter than the average population but were
not diagnosed with any known syndrome affecting height or with any endocrinological
deficiency, the researchers identified unique rare nonsynonymous and splicing mutations. In
a similar study design, researchers were able to narrow a large 288 Kbp region identified
from GWAS of multiple sclerosis to an 86.5 Kbp haplotype block containing 42 SNPs,
using targeted capture and NGS (Cortes et al., 2013).

Family Studies of Complex Disease
There has been a return to family-based experimental designs for complex disease genetics
recently, as it is expected that many members of the same family will carry a particular rare
variant; hence, the number of individuals needed for rare variant discovery is much smaller
than in cohorts of unrelated individuals (Bailey-Wilson and Wilson, 2011). Using a
combination of exome and whole-genome sequencing of affected individuals in
consanguineous families, researchers can use homozygosity mapping to identify and
characterize the variants contributing to genetically heterogeneous disorders.
Nonconsanguineous, large multigenerational, and multiplex pedigrees can also be used to
identify rare inherited variants. For example, Weedon et al. (2011) identified a novel
heterozygous mutation in DYNC1H1, segregating in a four-generation family affected with
Charcot-Marie-Tooth disease by using whole-exome sequencing (WES). Similarly, WES
was performed on a three-generation family with multiple individuals affected with
pulmonary arterial hypertension who did not carry the canonical TGF-b mutation (Austin et
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al., 2012). WES revealed a frameshift mutation in caveolin-1 (CAV1) that reduced the
normal caveo-lin-1 in the endothelial cell layer of the small arteries. In many cases, the
variants identified in these studies can also be independently validated in other cohorts. For
example, WES of a large pedigree identified a missense mutation in the affected individuals
that also segregated with other families suffering from late-onset Parkinson disease
(Vilariño-Güell et al., 2011; Zimprich et al., 2011), thus bolstering the significance of the
association. In some studies, WES results provide insights into the biological pathways
involved in disease susceptibility and/or pathogenicity. For example, Timms et al. (2013)
analyzed the exomes of multiplex families with schizophrenia and identified rare coding
variants in N-methyl-D-aspartate (NMDA) receptor genes in all of the families. Although
the variants were dispersed over many genes, this pathway was significantly enriched for
rare, deleterious mutations and suggested a possible role for glutamate signaling in the
pathogenesis of schizophrenia.

De Novo Mutation Studies
Although genomic research in the past decade has largely emphasized inherited variation,
NGS technologies also allow us to study, at base-pair resolution, the mutational processes
that occur in humans from one generation to the next. Family-based WGS studies have
shown that each individual’s genome harbors ~74 germline de novo mutations (DNMs)
(Conrad et al., 2011). These mutations are potentially more deleterious because they have
not been subject to natural selection and therefore are of considerable interest for sporadic
diseases.

Neurological and developmental disorders in particular highlight the impact of DNMs on
disease risk. Exome sequencing revealed rare de novo protein-altering mutations in seven of
ten individuals with idiopathic intellectual disability (ID) affecting nine different genes
(Vissers et al., 2010). Four large-scale studies (Iossifov et al., 2012; Neale et al., 2012;
O’Roak et al., 2012; Sanders et al., 2012) evaluated the impact of DNMs in autism spectrum
disorder (ASD) via exome sequencing of family quartets (patient, parents, and an unaffected
sibling). Each study included >100 families and found that DNM rates were consistently
higher in patients than in their unaffected siblings. Similar WES approaches have implicated
genes expressed in the developing heart for sporadic congenital heart disease (Zaidi et al.,
2013) and genes encoding chromatin regulators for sporadic ALS (Chesi et al., 2013). De
novo mutational paradigms have also been suggested by exome sequencing in sporadic
psychiatric disorders, such as schizophrenia (Girard et al., 2011; Xu et al., 2012). These
findings collectively support a role for de novo mutational processes in sporadic disorders
and highlight the extraordinary locus heterogeneity underlying susceptibility to complex
diseases.

The application of NGS to both rare and common genetic diseases has offered many insights
into disease etiology that undoubtedly merit deeper investigation. Taken together, these
studies have also served to highlight our incomplete understanding of the molecular
mechanisms by which mutations cause disease. Nevertheless, it seems likely that applying
NGS to uncover the genetic underpinnings of disease will help us to better understand the
complex relationship between genotype and phenotype.

Cancer Genomics Discovery
Over the past two years, the growth in cancer genomics discovery due to NGS is
unprecedented, with multiple examples of large-scale WGS- or WES-based studies
published in the literature for both adult and pediatric cancer types. The growth in our
knowledge of the genes frequently mutated in cancer genomes is illustrated in Figure 3,
based on the number of new mutations deposited in COSMIC (Forbes et al., 2010, 2011).

Koboldt et al. Page 8

Cell. Author manuscript; available in PMC 2014 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Here, the number of unique variants identified in tumor genomes stands in stark contrast to
those in germline DNA shown in Figure 1. Namely, in dbSNP, there is a clear saturation
effect because the majority of variants in any individual genome are shared with other
members of the population (and thus already in dbSNP). In COSMIC, however, the number
of unique variants closely mirrors the number of mutations submitted, reflecting the fact that
most mutations in a tumor genome are private to that tumor.

Cancer Genome Heterogeneity
For >100 years, the view of cancer cells through the pathologist’s microscope has indicated
that not all cancer cells in a tissue block are entirely similar. Several groups, using the digital
nature of NGS data, now have proven this “heterogeneity” of cancer cells at the genomic
level. Initially, genomic heterogeneity was demonstrated by copy number comparisons
between primary and metastatic disease (Campbell et al., 2010) and by whole-genome
amplification and low-coverage sequencing of amplified genomic DNA from single breast
cancer cells (Navin et al., 2011). Within the past year, published studies using either WES or
WGS have demonstrated the changes in genomic heterogeneity in cancers over the primary-
to-relapse/metastatic transition or have characterized heterogeneity with primary tumor
specimens. Specifically, these changes are determined by comparing the associated changes
in the percentage of tumor cells carrying specific mutations detected by deep coverage NGS
data during disease progression. These studies evoke an evolutionary aspect to cancer’s
response to survival pressures, including therapy, and have fueled interest in better under-
standing the genomes of patients who are likely to recur in their disease.

Early in 2012, Ding et al. described changes in heterogeneity and subclonal architecture of
primary acute myeloid leukemia (AML) samples compared to their matched first relapse
samples for eight patients (Ding et al., 2012). Using WGS coupled with secondary deep
hybrid capture-based NGS data on variant sites, clusters of mutations defining the genotypes
of a founding clone and derived subclones were identified. In each case studied, the primary
AML sample was either mono- or multiclonal, whereas the relapse sample was monoclonal
and carried the somatic profile of one of the primary subclones, as well as new mutations
that were acquired during chemotherapy. An analysis of transversion and transition
mutations indicated that all types of transversions were elevated in the relapse samples, a
DNA damage phenomenon that is attributable to the use of DNA-damaging chemotherapy
agents.

In genomic analyses of renal cell cancers, Gerlinger and colleagues (Gerlinger et al., 2012)
studied regional heterogeneity in four advanced tumors and metastases from a clinical trial
of everolimus (an inhibitor of mTOR) to evaluate the similarities and differences in the
genomic landscapes. Their approach included WES, SNP arrays, and gene expression
arrays. Their results indicated a branching evolution of the primary and metastatic tumors
studied, with a combination of universally shared and primary region-specific or metastasis-
specific private mutations. Unlike the previous study, everolimus was shown to not impact
the number and types of new mutations in posttreatment samples studied. A case was made
for phenotypic convergent evolution due to spatially separated, distinct mutations in SETD2,
KDM5C, and PTEN.

A study in breast cancer heterogeneity utilized data from 20 breast cancers selected across
the different molecular subtypes, one of which was sequenced to 188-fold depth to provide
sufficient sensitivity for heterogeneity analysis (Nik-Zainal et al., 2012). Much like the
AML study mentioned above, clustering of mutations sharing similar variant fractions from
high-coverage data was performed to identify the subclones. The clusters were further
refined by application of a Bayesian Dirichlet process, and further associations were made to
identify a hierarchy of mutational events in the natural history of the cancer’s development.
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Prediction of Targeted Therapy/Actionable Mutations
Since the earliest descriptions of specific mutations in EGFR predicting response to small-
molecule inhibitors such as tyro-sine kinase inhibitors (Lynch et al., 2004; Paez et al., 2004;
Pao et al., 2004), the association of somatic mutations to drug response has been of
increasing interest. The use of NGS technologies in this regard has several advantages over
the original methods (PCR and Sanger fluorescent sequencing) used to acquire these data.
Namely, the NGS-based inquiries required for discovering the gene-therapy association can
be less hypothesis driven and examine all genes, the associated cost to generate the data for
each patient sample is both less expensive and more rapidly obtained, and the ability to
detect specific types of mutations such as insertions or deletions of one or several
nucleotides is facilitated by NGS. The first aspect is important because most small-molecule
therapies target a range of mutated proteins, so multiple genes must be tested in each patient.
The second aspect is important because these queries are now approaching clinical usage
wherein identification of appropriate therapy(ies) must happen in a 2–3 week period to be
applicable to patient care. Lastly, although small insertion/ deletion mutations are rarer than
single-nucleotide substitutions, their impact on the resulting protein may be more profound.
Because Sanger sequencing typically fails to detect these variants, it is both likely that the
frequency of these mutations is underestimated and certain that their response to therapy is
less well understood as a result.

One downside of the use of targeted small-molecule inhibitors is that many patients
experience an initial complete pathologic response or at least stable disease but then acquire
resistance to the therapy and progress (Engelman et al., 2007). This phenomenon has mainly
been studied at the protein level (Girotti et al., 2013; Prahallad et al., 2012) or by focused
sequencing (Sequist et al., 2011). Here, results often demonstrate that the cellular pathway
blockade affected by targeted therapy is circumvented by new mutations and/or
overexpression either of the targeted gene or of another gene in the same pathway. Given
these discoveries, it remains to be demonstrated by deep NGS or single-cell sequencing of
progression disease biopsies whether the mutations that enable circumvention of the
blockade are pre-existing in a minor proportion of tumor cells or are new mutations that
arise in response to the pathway blockade.

Circulating Tumor DNA Analysis
Many solid tumors shed cells and/or DNA into the blood stream at very low levels that are
thought to fluctuate with increases or decreases in the disease burden of the patient. Hence,
the ability to detect these changes with high sensitivity poses an interesting and potentially
powerful disease-monitoring capability that likely would complement imaging modalities
such as CT or MRI but at much lower cost and with lower associated morbidities (Diehl et
al., 2005; Diehl et al., 2008; Swisher et al., 2005). In this regard, several groups have
recently published manuscripts describing the selective capture of circulating tumor cells
(CTCs) or the amplification and sequencing of circulating tumor DNA or RNA. This so-
called “liquid biopsy” approach using plasma can detect the predominant somatic mutations
for that tumor type (Forshew et al., 2012), or if chromosomal translocations or structural
variants already are known from prior characterization of the cancer genome, PCR primers
can be designed to amplify the tumor-specific products for NGS and analysis (Dawson et al.,
2013; Leary et al., 2012). Another recently published example of this type of detection by
NGS involved the detection of ovarian or endometrial cancer by gene-specific assays of
PAP test samples (Kinde et al., 2013).

Noninvasive Prenatal Testing
As mentioned, clinical use of NGS in cancer diagnosis, therapeutic decision making, and
progression monitoring is poised for introduction. Several large academic centers and a
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handful of commercial entities are offering NGS-based assays in the CLIA-regulated
environment. An NGS-based clinical assay that already has received widespread adoption is
noninvasive prenatal testing for chromosomal abnormality diagnosis using samples such as
maternal blood. In 1997, Lo et al. demonstrated that male sex could be determined from
circulating fetal DNA in maternal plasma and serum samples and that the level of circulating
fetal DNA increases with gestational age (Lo et al., 1997). However, achieving high
sensitivity and specificity of fetal genotype was difficult, given the low levels of fetal DNA
and the cost of high-depth sequencing.

With the advent of NGS, resolving the whole genome of a fetus from maternal blood
sources became possible. In 2010, Lo et al. sequenced maternal plasma genomic DNA to
65× coverage and then used the parental SNP genotypes (from SNP array data) to
distinguish fetal versus maternal sequencing reads (Lo et al., 2010). This elegant proof-of-
concept study demonstrated that the entire fetal genome is represented in the maternal
plasma. Yet, this approach was limited by the use of a chorionic villus sample and the
somewhat circular logic by which parental haplotypes were inferred from common
heterozygous SNP genotypes and then used to predict the fetal haplotype, thereby missing a
large proportion of the rare variation. In addition, the authors were unable to detect de novo
mutations. To overcome these obstacles, Kitzman et al. used WGS with maternal plasma as
well as fosmid clone pooling to resolve long haplotype blocks in the mother (i.e., “phasing”;
Kitzman et al., 2012). The paternal genome was sequenced but not phased. This approach
achieved >99% genotype accuracy at maternal heterozygous sites when predicting the fetal
genotype. In addition, de novo mutations and recombination switch breakpoints were
detected using a Hidden Markov model. The results were confirmed by WGS from cord
blood after birth. Similarly, Fan et al. (2012) performed WGS and WES with maternal
plasma and maternal haplotype resolution via direct deterministic phasing using single cells.
The paternal genome was inferred using detection of paternal-specific alleles and
imputation, and the fetal genome was resolved to >99% accuracy using molecular counting
of parental genotypes in the maternal plasma.

These studies demonstrate the feasibility of prenatal testing at single-nucleotide resolution,
but major limitations likely will hinder clinical translation. For example, sequencing to
sufficient depth to detect fetal DNA genotypes is still quite expensive. In addition, it is
prohibitively expensive and time consuming to routinely create and sequence maternal
fosmid pools. As single-molecule sequencing technologies improve, it may be realistic to
routinely resolve extended parental haplotypes to assist in fetal genotyping. For the time
being, commercial noninvasive NGS prenatal tests are offered, but these only detect
common chromosomal aneuploidies such as Trisomy 21.

Concluding Remarks
In summary, next-generation sequencing technologies have had an incredible impact on our
knowledge of human genetic diseases over a very short time frame. Whether this trend will
continue rests on a variety of issues, some quite complex. For example, the size of whole-
human-genome data sets remains large, and this poses significant challenges for data
download and storage and for computational infrastructure. Data privacy of human subjects
is paramount but is increasingly difficult to control, raising concerns in the public that may
inhibit consent by individuals to participate in genetic studies. Ethical aspects overshadow
the return of information to study participants and individuals seeking genetic diagnosis due
to our remaining ignorance about the pathologic and functional consequences of variation in
the human genome. The next few years will determine which applications of NGS are
incorporated into the clinical diagnostic setting, many of which may benefit patients but yet
may not be covered by insurers. Even as this scenario plays out, it is undoubtedly the case
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that NGS will continue to be a revolutionary force in basic biomedical and biological
genomics inquiry for some time to come.
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Figure 1. Growth in the Numbers of dbSNP Variants in the Human Genome
Increases in the numbers of SNPs submitted (dotted line) and cataloged as unique reference
variants (solid line) in dbSNP are charted over the periodic database releases from August
2002 until the most recent release in June 2012. As indicated by the two lines, while overall
submissions have increased exponentially since 2008 (when large projects such as the 1,000
Genomes Project began), the number of unique variants has not increased at a comparable
rate.
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Figure 2. dbSNP Growth due to Rare Variant Discovery
This graphic illustrates the amount of rare and extremely rare variant discovery in two recent
releases of the NCBI dbSNP database, where a global minor allele frequency of >0.05 is
considered a common variant. As indicated, rare variant discovery has increased
dramatically in the most recent build of dbSNP (137).
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Figure 3. Growth in COSMIC Database Reports of Identified and Unique Mutations
Increases in the numbers of mutations and unique variants identified from DNA sequencing
of cancer samples as cataloged in the COSMIC database, from November 2004 until the
most recent release in July 2013. Note that the numbers of unique variants identified are
increasing at a rate equal to the numbers of mutations discovered.
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Table 1

OMIM Phenotypes for which the Molecular Basis Is Known, 2007 and 2013

Inheritance Pattern January 2007 July 2013

Autosomal 1,851 3,525

X Linked 169 277

Y Linked 2 4

Mitochondrial 26 28

Total 2,048 3,834
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Table 2

Disease-Causing Genes Identified by Exome Sequencing Studies, 2009–2010

Gene Disorder Individuals Citation

DHODH Miller syndrome four affected from three kindreds (Ng et al., 2010b)

FLVCR2 Fowler syndrome two unrelated (Lalonde et al., 2010)

GPSM2 Nonsyndromic hearing loss one proband (Walsh et al., 2010)

MLL2 Kabuki syndrome ten unrelated (Ng et al., 2010a)

WDR62 Severe brain malformations one proband (Bilgüvar et al., 2010)

PIGV Hyperphosphatasia mental retardation three siblings (Krawitz et al., 2010)

WDR35 Sensenbrenner syndrome two unrelated (Gilissen et al., 2010)

STIM1 Kaposi sarcoma one patient (Byun et al., 2010)

ANGPTL3 Familial combined hypolipidemia two family members (Musunuru et al., 2010)

ACAD9 Complex I deficiency one patient (Haack et al., 2010)

SETBP1 Schinzel-Giedion syndrome four unrelated (Hoischen et al., 2010)

TGM6 Spinocerebellar ataxia four family members (Wang et al., 2010)

FADD Autoimmune lymphoproliferative syndrome one proband (Bolze et al., 2010)

VCP Familial ALS two family members (Johnson et al., 2010)
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